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Abstract

We propose an object recognition scheme based on a method for feature extraction from
gray level images that corresponds to recent statistical theory, called projection pursuit, and is
derived from a biologically motivated feature extracting neuron. To evaluate the performance
of this method we use a set of very detailed psychophysical 3D object recognition experiments
(Bdilthoff and Edelman, 1992).
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1 Introduction

A system which performs recognition of three-dimensional objects in visual space must transform a
complex pattern of visual inputs to an appropriate categorization. Such recognition is possible, for
example, by template matching once the object and its templates are brought into register (Ullmian,
1989). Other similar schemes (Lowe, 1986; Thompson and Mundy, 1987) bae the recognition
on viewpoint consistency, which relate projected locations of key features of a model to its 31)
structure given a hypothesized view point. The regularization network or HyperBF interpolation
scheme (Poggio and Edelman, 1990; Poggio and Girosi, 1990) represents 3D objects by sets of 2[)
views using vectors of key-feature locations and regards generalization from familiar to novel views
as a problem of nonlinear hypersurface interpolation in the space of all possible views. All these
methods rely on the ability to find key features in the objects and in some cases, to solve the
correspondence problem between them.' However, sometimes these tasks can be ;s difficult as the
recognition itself.

In this paper, we propose an object recognition method that does not rely on finding such key
features a-priori. Instead, a transformation is sought which reduces the pixel image representations
into a low dimensional space from which nonlinear hypersurface interpolation can be used for the
recognition task. The dimensionality reducing transformation is based on projecting the pixel
image onto a set of object features. The actual form of object features, and methods of extracting
them, are not at all clear and are subject to current research in many disciplines (Edelman, 1991).
We propose to use a method for feature extraction which corresponds to recent statistical theory
(Friedman and Tukey, 1974; Friedman, 1987) and is based on a biologically motivated feature
extracting neuron. To evaluate the performance of this method based on the above criteria we use
a set of very detailed psychophysical 3D object recognition exporime't- (BulIthoff znd Edclmnan,
1992). These psychophysical experiments were specifically constructed to test several theories of
object representation and recognition and are therefore appropriate for testing the usefulness of
our features of recognition.

2 A new model for object recognition based on a novel set of
features

Many feature extraction theories for object recognition are based on the assumption that objects
are represented by clusters of points in a high dimensional feature space. (Duda and Hart, 1973).
However, finding clusters in very high dimensional space suffers from the inherent sparsity of such
space, and therefore can not be direct'ly approacht-d by classical methods such as cluster analysis
(Duda and Hart, 1973), discriminant analysis (Fisher, 1936; Sebestyen, 1962), or factor analysis
(Harman, 1967).

Recent work (Intrator, 1990; Intrator and Cooper, 1992) connecting biologically motivated
feature extraction networks (Bienenstock et al., 1982, henceforth to be referred to as "BCM") with
sophisticated statistical techniques (Friedman and Tukey, 1974; Friedman, 1987) suggests that this

'Edelman and Weinshall (1991) used the vertices without .cling the correspondence problem between them
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problem may be approached by extending a method known as Exploratory Projection Pursi m
of this method provides both a rigorous mathematical definition of "salient features of rec•,grii,'
and a procedure for extracting them.

2.1 Feature Extraction in High Dimensional Spacc - the BCM Model

From a mathematical viewpoint, extracting features from gray level images is related to, dinen•o:,,-
ality reduction in high dimensional vector space, in which an n x k pixel image is considered t,, be a
vector of length n x k. The curse of dirncnsion'alty (Tiellman, 1961) says that it is impossible to, bas(,
the recognition on the high dimensional vectors directly, because the number of training patterns
needed for training such a classifier should increase in an exponential order with the dimensionalitv.
Thus, if the important structure (for classification) can be represented in a low dimensional space,
dimensionality reduction should take place before attempting the classification. Furthermore, due
to the large number of parameters involved, a feature extraction method that uses the class labels
of the data may miss important structure that is not exhibited in the class labels, and hertf,•re
be more biased to the training data than a feature extractor that relies on the high dilnensi.rna!
structure (Huber, 1985). This suggests that an unsupervised feature extracticon method may have
better generalization properties iM high dimensional problems.

In this paper we concentrate on a specific form of unsupervised dimensionality reductionifeature
extraction. This form relies on the notion of distinguishing features which focus on discriwina:ion
among classes and not faithful representation of the data. Thus, this form is differat2 frm,, classical
methods such as factor analysis (Harman, 1967, for review) which tend to combine feat:rres that
seem to have high correlation, or principal component analysis which seeks directions that inax'r-inze
the variance of the projected distribution.3

A general framework for featlire extraction is Projection Pursuit, and its unsupervised version
- Exploratory Projection Pursuit (Kruskal, 1969; Friedman and Tukey, 1974; Friedman, 1987,; Hu-
ber, 1985, for review). The idea behind projection pursuit is to pick inte-esting low dirnensiorl-al
projections of a high dimensional point cloud by maximizing an objective function called t he pro-
jection index. The projection index usually measures some form of deviation from norinality of
the projected distribution.4 Intrator (1990) presented a multiple feature extraction method that
seeks multi-modality in the projected distributions. This method is based on a modified version
of the BCM neuron (Bienenstock et al., 1982). The biological relevance of this neuron has been
extensively studied (Bear et al., 1987; Bear and Cooper, 1990; Gold, 1991), and it was shown that
results of this method are in agreement with classical visual deprivation experiments (Clothiaux
et al., 1991). Sets of these neurons which are organized in a lateral inhibition architecture (In-
trator, 1990; lntrator and Cooper, 1992), which forces different neurons in the network to find
different projections (i.e., features), combined with the simplicity of the projection index, make
this method computationally practical for multiple feature extraction in high dimensional spaces

2 See (Intrator and Cooper, 19921 for a d.zofssion I. the etifferenre3 Prtncipal components may not retain cnuugh stror:ture needed for classification (Duda and Hart, 1973, p 2i2)
'For a discussion on various projection indices, see Iluber (1985), Jones and Sibson (1987), Intrator and ,p* 'r

(1992).
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(Intrator, 1992).

3 Application of the Model to 3D Object Recognition

The combined unsupervised feature extraction/classification method used in these exrperimen's is

described in Intrator (1992). In general, the generalization prope.u-s of !.vlybrid feau,ýre .xtra.-

tion/classification method depend on the feature extraction as well as the classification inethod

used. Edelman and Poggio (1990) have attempted the recognition of the same 3D wire-like objects
discussed in this paper, by extracting a priori an ordered list of vertices from the image and using

a generalized radial basis function classification scheme (Moody and Darken, 1989; Poggio and
Girosi, 1990, GRBF). This method classified lists of vertices based on their orientation within a
vector space defined by the vertex sets of known objects; it achieved close to human performance

in generalizing to novel views of the wires. The performance reflected a strong focus on the clas-
sification technique, and assumed a determinietic, a-priori feature extraction. \Ve, on the other

hand, want to concentrate on the examination of the properties of our proposed feature extraction
method and therefore in this study have chosen to use a classical, well-known classifier, based on

the k-nearest-neighbor-rule' (see for example, Duda and Hart, 1973)
In addition to the type of classifier used, the recognition paradigm with which the system is

tested is a vital component in determining the usefulness of the features extracted. In the following

sections we present an application of the BCM model to a set of specific 3D object recognition

problems. The experiments chosen fulfill two important criteria: 1) they test the model's abilities

to both recognize and generalize across a wide range of difficulties, and 2) these same studies have

been used to test the abilities of not only computational models, but also human subjects, the

psychophysical results in fact serve as benchmarks for this study.

3.1 Previous Studies

Edelman and Biilthoff (1990, 1991) developed and used wire-like objects in their experiments, in
an effort to simplify the problem for the feature-extractor by providing little or no occlusion of the

key features from any viewpoint. The wires consisted of seven connected segments, each pointed in

a random direction but with its vertices distributed normally around the origin. Each experiment

consisted of two phases. training and testing. In the training phase subjects were shown the target

object from two standard views, located 75 degrees apart along the equator of the viewing sphere.

The target oscillated around each of the two standard orientations with an amplitude of ± 15 degrees

about a fixed vertical axis, with views spaced at 3-degree increments (see Figure 1). Test views were

located either along the equator - on the minor arc bounded by the two standard views (INTER

condition) or on the corresponding major arc (EXTRA condition) - or on the meridian passing

through one of the standard views (ORTHO condition). Testing was conducted according to a two-
alternative forced choice (2AFC) paradigm, in which subjects were asked to indicate whether the

6Very similar classification results where obtained using a back-propagation classifier. In a forthcoming article,

performance of back-propagation and radial basis function (RBF) classifiers will be compared using features extracted

by the above feature extraction method.
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displayed image constituted a view of the target object shown during the preceding training session.
Test images were either unfamiliar views of the training object or random views of a distractor (one
of a distinct set of objects generated by the same procedure).

Viewing Sphere

Trainmig = S~andard vews "000' & -r75.' -. 150
Testng r = INTER

o = ORTHO
0 = E XTRA

Figure 1: The training and testing experimental paradigm

A number of interesting characteristics of human visual object recognition abilities emerged
from the psychophysical experiments. Generalization over orientations lying between two sets of
known views - the INTER condition - resulted in, on average, significantly fewer errors than with
the other two extrapolation conditions. In addition, error rates increased steadily as the testing
views moved farther away from the learned views, until recognition was near chance levels at large
displacements. Finally, there were indications for a "horizontal bias," so that error rates were lower
when generalization was required along the horizontal, as opposed to the vertical, plane.

3.2 Experimental Paradigm

In the first part of the study, the network was tested on a 63 by 63 array of 8-bit gray-scale values
with a paradigm nearly identical to the one used in the psychophysical investigation (Edelman
and Biilthoff, 1991). The procedure was modified slightly in that training was performed with two
wires, since the k-NN classifier would yield meaningless results if trained on only a single wire.

In the second part of the study, simple yes/no recognition was upgraded to a more difficult
classification task involving six separate wires. The modification was necessary in order to filly
test the BCM model's ability to extract the most salient rotation-invariant features from the images-

Specifically, since BCM -furons explicitly search for differentiating features (due to the search for
multi-modality in the projected distribution), many cases involving only two distinct sets of inputs
can be solved with "features" corresponding to prototypical views of each wire. In these cases, the
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two sets of wire-views, corresponding to the two wires, would form two distinct clusters in feature

space. However, such differentiation would be much more difficult with a larger number of wires,
and therefore the BCM network neurons would be forced to find projections that correspond to

individual, rotation-invariant featurcs, not prototypical views of individual wires.

In addition, the model was modified in an attempt to account for the asymmetric psychophysical
results. In the psychophysical experiments, the horizontal bias was found when humans were gi'•cn

the exact same paradigm as described above, except the objects were rotated 90 degrees so that the

training axis was aligned vertically, not horizontally. One possible explanation of such asymmetry is

in increased resolution at the object representation level, namely, due to the fact that behaviorally,
humans spend more time rotating around a vertical axis (i.e., rotation in a horizontal plane). This

is experimentally equivalent to having more patterns rotated in a horizontal than in a vertical

plane. This possibility has been eliminated in the careful psychophysical experiment performed by

Edelman and Biilthoff (1991), in which subjects are provided identical experience with horizontal

and vertical training. The continued existence of the bias under such conditions implicates an

internal mechanism. We hypothesized greater a-priori resolution in the internal representation

along the horizontal plane.6 More specifically, we set the ratio between the resolution in the

horizontal plane and that in the vertical plane (the aspect ratio) to be 2/1 for "normal" training

in the horizontal plane; conversely, training in the vertical plane was, from the point of view of

the network, equivalent to setting the aspect ratio to be 1/2. Prediction of simulation performance

due to this asymmetrical resolution is not straightforward since there are two contradictory effects.

On the one hand, decreased resolution in the vertical plane means reduced disparity from rotations

along that plane and therefore possibly better performance. On the other hand, there may also be

improved performance in the horizontal axis since higher resolution will emphasize features which

are rotation invariant along that direction.

4 Results

Figure 2: The six wires from a single view.

The 6 wires used in the experiments are depicted in Figure 2. Different views of three of the wires

are depicted in Figure 3. When only two wires were used (experiment one) the features extracted
correspond almost exclusively to a single view of a whole image of one of the wires.

In contrast, when the task was recognition of six wires the extracted features emphasized small

patches of several images or views, namely, areas that either remain relatively invariant under the

6There is, in fact, limited evidence for visual field elongation in the horizontal plane (Hughes, 1977)Y
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rotation performed during training or represented a major differentiating characteristic of a specific
wire (Figure 4). A typical result is a set of weights that may correspond to a single wire but

emphasizes small patches of the object and selectively inhibits selected areas which correspond to
invariant locations of adjacent wires. For example, the top left image of Figure 4 largely represents
object number 5 in Figure 2 with additional inhibition from other objects, while the top right image
or the bottom second from the right image exhibit weights related to sevral imagps/views.Eu....

Eu....E.mmo.
Figure 3: Different views (15 degrees apart) of a single wire; top-to-bottom are INTER, EXTRA,

and ORTHO.

Figure 4: Rotation invariant features for tube-like objects extracted using a network of 7 BCM
neurons trained on 6 tube-like objects. White areas represent strong synaptic weights, black areas
represent negative synaptic weights (inhibition).

Classification results demonstrate the usefulness of the extracted features: generalization in the
INTER orientations resulted in consistently low error rates - around 15% (in which the chance error
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rate on this six wire experiment is 83.3%) - which indicates that the features extracted by the
BCM network could generalize well in those new views.7 Furthermore, the results are comparable
to those obtained in the psychophysical experiments. First, INTER recognition resulted in, on

average, significantly fewer errors than with the other two extrapolation conditions. Second, error
rates increased steadily as the testing views moved farther away from the learned views, until
recognition was near chance levels at large displacements. These results are analogous to the ones
shown in Figure 5 in which the aspect ratio is 2/1.

Taken together, Figures 5 and 6 demonstrate a horizontal bias as seen in the psychophysical
studies. When aspect ratio is 0.5, which corresponds in our model to training on rotations in
the vertical plane, INTER performance is worse. This result suggests that finding specific rotation

invariant features was harder in that case, given its lower resolution. On the other hand, there is
no significant change in the performance of EXTRA and ORTHO orientations, suggesting that the

extracted features were in both situations equally useful for EXTRA and ORTHO orientations.
Figures 7 and 8 show the results of the experimental paradigm testing the effect of additional

experience during training in the horizontal plane.8 Both figures show results on training with an
aspect ratio of 1, i.e., no resolution asymmetry was used between the horizontal and vertical plane.
In the experiments summarizea in Figure 7, the same number of training views (experience) as in
the previous set of experiments were used. In the experiments summarized in Figure 8, half as many
training views were used. A number of interesting observations can be made. Results on the INTER

condition for an aspect ratio of 1 behave as can be predicted from the previous set of experiments;
specifically, error rates were in between those of aspect ratios 2 and 0.5. EXTRA and ORTTiO
results, however, were less noticeabiy affected, indicating that object resolution primarily affected
the discovery of rotation invariant features to be used for recognition in the INTER condition, as
opposed to reducing overall recognition ability. Results from Figure 8,however, demonstrate a
different effect. Reducing the number of training patterns, analogous to reducing the experience of
vertical training, does not lead to an asymmetry in specific recognition conditions, but instead to
a general decline in overall recognition ability. This suggests that reducing the number of training
views in a model (. .thout reducing the overall training angle rotation) does not simply affect the

ability to extract rotation-invariant features for a particular recognition task. Instead, it degrades
the ability of the model in overall feature extraction performance.

5 Discussion

This paper touches on issues of object representation. It is assumed that an object is internally
represented by a particular combination of features. The nature of these features and the means

for binding together the most important combination of features are still undetermined (Sejnowski,
1986). We presented an unsupervised method for extracting features directly from grey level pixel
images, and we showed that a surprisingly small number of features is needed for a complex clas-

"TAdditional support to the usefulness of the extracted features to rotation invariant recognition is shown in a
subsequent work (Intrator et al., 1991; Sklar et al-, 1991) in which the extracted features are used to occluded parts
of the images and another network is trained to recognize the occluded images.

'Testing in both cases used the same number of patterns as in the previous experiments.
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sification task. A comparison of our results to similar piychophysical experiments gives some indi

cation that these features posses desired invariance properties which allow for overall classificati'On

performance that compares favorably with human performance.
Extracting features from these gray level images is a highly non-trivial statistical task. The

dimensionality of this problem is 63 x 63 pixels; therefore, the curse of dirnensionality implies that

the number of training patterns should be immense, and yet from a small training set of 132 witc.

useful directions (projections) were extracted corresponding to features which were especially u.sfI

for rotation invariant recognition. This suggests that the BCM network may be a prdctical tu,,l ft,r

gray level image recognition in which internal low dimensional feature representation emerges as a

result of unsupervised training.
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